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REVIEWS 

The Tricomi Equation with Applications to the Theory of Plane Transonic 
Flow. By A. R. MANWELL. Pitman, 1979. 185 pp. f8.50. 

Numerical Methods for the Computation of Inviscid Transonic Flows 
with Shock Waves. Edited by A. RIZZI & H. VIVIEND. Vieweg, 1981. 266 pp. 
DM 72-00. 

Transonic aerodynamics has had, in its long history, its ups and downs. 
From the seeds sown by Molenbroek, Chaplygin and Meyer in their fundamental 

papers about 1900 describing aspects of compressible flow and introducing the 
hodograph transformation, and nurtured up through the early 1900s by Taylor, 
Tricomi and Frank1 with further understanding of mixed flows and partial differential 
equations, the topic blossomed into full vigour across the world during thedecade 
1947-1957 with classic contributions from Lighthill, Cherry, Germain, Busemann, 
Guderly, Ferrari, Friedrichs, Von Mises and Morawetz. During this period of creative 
analytic activity solutions for a range of restricted types of transonic flow were 
studied, and questions of uniqueness and existence were intensely debated. In 
particular concern was focused on the mathematical conditions for shock-free super- 
sonic flow regions embedded in subsonic flow. 

By the beginning of the 1960s, although fundamental questions remained un 
answered activity diminished because the limit of analytic methodologies had almost 
been reached. Moreover the space age had arrived, so far more challenging problems 
(and money) were to be found elsewhere. Transonic aerodynamics was sustained 
during this period by lone experimentalists, in particular Pearcey at  the NPL in the 
UK and Whitcome in the USA. It was due to their patient intuitive accumulation 
of physical insight which brought the gradual realization that by careful aerofoil 
design the appearance of shock waves could be delayed to higher free-stream Mach 
numbers, thus improving aircraft performance considerably. The emergence of this 
realization at  the same time that computer technology had become sufficiently 
developed gave the impetus for a new era of transonics based on numerical methods, 
supported by careful experimental data. A new generation of inventive and active 
numerical analysts, Boestel, Jameson, Murman, Garabedian, Balhaus, Steger, have 
appeared on the scene. So once again transonic aerodynamics is alive and exciting. 

The coincidental and simultaneous appearance of these two complementary mono- 
graphs contrasts nicely the elegance and subtleties of the past analytic era with the 
contemporary harnessing of brute force numerical power and powerful algorithms. 
Whereas the account of the past by Manwell is more or less complete the account 
edited by Rizzi/Viviend is already out of date. 

Manwell’s book is a concise, succinct, and readable description of the rigorous 
analytical theory of an inviscid fluid flowing at  high subsonic Mach numbers past 
a restricted range of two-dimensional profiles. After an informative and critical 
review in non-mathematical terms of the historical development, Manwell describes 
briefly some standard techniques for solving linear equations of second-order and 
of mixed type, tthe equations of plane transonic flow in the physical and hodograph 
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planes, maximum principles and uniqueness theorems, solutions of the Euler-Poisson- 
Darboux equation, weak shock wave solutions and the main argument in the transonic 
controversy. This controversy revolves around the work of Morawetz who showed 
that if there is a smooth flow around a profile (i.e. a mixed subsonic/supersonic flow 
without shocks) then for arbitrary smooth perturbations of that profile no adjacent 
smooth flow solutions can be found. But Ferrari and Tricomi disagree because of 
doubt about the definition of a ‘profile’. A consequence of the above theorem is that 
mathematically a smooth mixed flow past an aerofoil without a shock is unlikely; 
the fact that modern aerofoils have extensive embedded supersonic regions without 
shocks is unpalatable to the mathematician, a fact which Manwell fully recognizes 
and acknowledges. It has been suggested, but not mentioned by Manwell, that the 
three-dimensionality of the real world could well relax conclusions based on two- 
dimensionality. Manwell concludes that analytic progress might be feasible by 
widening the solution of the hodograph equations by considering nonlinear boundary 
conditions. 

The monograph edited by Rizzi and Viviend is totally different. It reports the 
outcome of a Workshop held in Sweden to compare results of different numerical 
methods developed across the western world applied to a set of problems of high 
subsonic inviscid flows past two-dimensional (non-lifting and lifting) aerofoils. 

There are three main groups of field solution; numerical solution of the full non- 
linear potential equations with conservation of mass across any ‘shock ’ disconti- 
nuities (i.e. fully conservative solution) ; numerical solution of the full nonlinear 
potential equation without conservation of mass across any ‘shock ’ discontinuities, 
(i.e. non-conservative solution) ; numerical solution of the Euler equations in con- 
servative form. Within these groups there are different approaches, either by finite 
differences, finite volumes, or finite elements, with various levels of fast algorithms 
to solve the discrete representation of the equations, e.g. relaxation, approximate 
factorization or multi-grid. It is recognized that the solution of the Euler equations 
is, in principle, the more exact since ‘shock’ discontinuities approximate closely to 
Rankine-Hugoniot shocks, and the correct rotational conditions are obtained aft of 
the shock. But such programs tend to be long, so many workers choose the easier 
approach of neglecting entropy changes across a ‘shock ’ discontinuity and assuming 
potential flow throughout the field. Unfortunately, when the conservative form of 
solution of the potential equation is obtained, the ‘shock’ discontinuityis significantly 
larger and located further aft along the aerofoil chord than a corresponding Rankine- 
Hugoniot shock, whereas the incorrect non-conservative solution of the potential 
equation gives ‘shock’ discontinuities which line up much more closely with the 
solution of the Euler equations. Non-conservative solutions of these potential equa- 
tions are not unique ; nevertheless such non-conservative solutions play an invaluable 
role a t  the present time in the aircraft industries. 

This whole area is one of transition in which rapid progress is taking place in the 
understanding of the ranges of validity of the different types of solution, and in the 
development of efficient numerical algorithms, possibly interrelating and phasing in 
with the new generation of computers either of the vector-processing array type or 
the distributed-array processor type. The general reader will be able to appreciate 
the trends but the outlines of the various methods given in the book are cursory, so 
for detailed background the general reader will have t.o go to the original sources. The 
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specialist will be intrigued by the differences between the different methods in each 
group of solutions. 

Overall, as far as this reviewer is concerned, both of these monographs are welcome 
additions to his bookshelf. Manwell has put into perspective the mathematical rigour 
of plane transonic flows whereas Rizzi/Viviend have performed a useful service in 
clarifying the st,ate of the art  of about a year ago. 

G. J. HANCOCK 


